



CBSE NCERT Based Chapter wise Questions (2025-2026)

## Class-XII

## Subject: MATHEMATICS

# Chapter Name : Relations & Functions (Chap : 1)

**Total : 14 Marks (expected) [MCQ(1)-2 Mark, VSA-(2)-4 Marks, SA-(1)-3 Marks, LA(1)-5 Marks]**

## Level - 1 & 2 (Higher Order)

## Section - A

### MCQ Type :

1. Let  $A = \{1, 2\}$ , then number of reflexive relations on  $A$  is  
Ⓐ 2 Ⓑ 4 Ⓒ 0

(Hints : if  $n(A) = x$  then number of reflexive relation is  $2^{x^2-x}$ )

2. For real  $x$ , let  $f(x) = x^3 + 6x + 1$ . Then,

Ⓐ  $f$  is 1-1 and not onto on  $\mathbb{R}$  Ⓑ  $f$  is onto on  $\mathbb{R}$  but not 1-1  
Ⓒ  $f$  is 1-1 & onto on  $\mathbb{R}$  Ⓑ  $f$  is neither on-one nor onto on  $\mathbb{R}$

(Hints : 1 = 1 & onto function)

3. If  $A = \{1, 2, 3\}$  and  $I_A$  be the identity relation on  $A$ , then

Ⓐ  $(1, 2) \in I_A$       Ⓑ  $(2, 3) \in I_A$       Ⓒ  $(1, 3) \in I_A$       Ⓓ  $(2, 2) \in I_A$

(Hints : Identity function)

4. Let the function  $f: R \rightarrow R$  be defined by,  $f(x) = x^2$ , find  $f^{-1}(25)$

Ⓐ 5 Ⓑ  $\sqrt{5}$  Ⓒ -5 Ⓓ  $\{-5, 5\}$

(Hints : Definition of  $f^{-1}(x)$ )

5. The mapping  $f$  is invertible if  $f$  is

- (A) injective
- (B) Surjective
- (C) Bijective
- (D) None of these

(Hints : Definition of  $f^{-1}$ )

6. The relation "congruent modulo" is

- Ⓐ reflexive relation
- Ⓑ a symmetric relation
- Ⓒ a transitive relation
- Ⓓ all of these

### (Hints : Equivalence relation)

7. Let  $A \neq \emptyset$  and  $R \subseteq A \times A$  and  $R$  is antisymmetric relation. If  $(-1, x) \in R$  &  $(x, -1) \in R$  then the value of  $x$  is

(Hints : Definition of antisymmetric relation)

## Section - B

### very short answer (VSA) :

1. A function  $f : A \rightarrow B$  defined by  $f(x) = 2x$  is both one-one and onto. If  $A = \{1, 2, 3, 4\}$ , then find the set  $B$ .

(Hints : find range using  $f(x) = 2x$ )

2. How many equivalence relations on the set  $\{1, 2, 3\}$  containing  $(1, 2)$  and  $(2, 1)$  are there in all? Justify your answer.

**(Hints : Equivalence relation)**

3. An equivalence relation  $R$  in  $A$  divides it into equivalence classes  $A_1, A_2, A_3$ . What is the value of  $A_1 \cup A_2 \cup A_3$  and  $A_1 \cap A_2 \cap A_3$ ?

**(Hints : Equivalence relation)**

4. Show that modulus function is not a bijective function.

**(Hints : Bijective function)**

5. In what condition  $f(x) = \frac{ax + b}{cx + d}$  always represents one-one function?

6. Prove that  $f: R \rightarrow R$  defined by,  $f(x) = \sin x \forall x \in R$  is not bijective.

7. Prove that  $f: [-1, 1] \rightarrow [-1, 1]$  is neither one-one nor onto. where  $f(x) = |x|$

**Section - C**

**Short Answer (SA) Type Question :**

1. Check whether the relation  $R$  in the set  $Z$  of integers defined as  $R = \{(a, b) : a + b \text{ is 'divisible by } 2\}$  is reflexive, symmetric or transitive. Write the equivalence class containing  $0$  i.e  $[0]$ .

**(Hints : Find the set of all those elements of  $z$  which are related to  $0$  i.e  $[0] = \{b \in z : (0, b) \in R\}$  )**

2. Let  $R$  be the relation on set of real numbers  $R$  defined as  $\{(x, y) : x - y + \sqrt{3} \text{ is an irrational number } x, y \in R\}$ . Verify whether  $R$  is reflexive, symmetric or transitive.

3. Show that the function  $f: N \rightarrow N$ , where  $N$  is a set of natural numbers, given by  $f(n) = \begin{cases} n - 1, & n = \text{even} \\ n + 1, & n = \text{odd} \end{cases}$  is a bijection.

**(Hints : bijective function)**

4. If  $e^x + e^{f(x)} = e$  then find the domain and range of  $f(x)$ .

**(Hints : domain and range)**

5. Let  $f(x) = x|x|$  and  $g(x) = \sqrt{|x|}$  then the number of elements in the set  $\{x \in R : f(x) = g(x)\}$  is equal to  $k$ .

Find the value of  $k$ .

**(Hints : Equal function)**

6. Let  $R$  be a relation on  $N$  defined by  $R = \{(x, y) : x + 2y = 8\}$ . the range of  $R$  is  $\{1, \lambda, 3\}$ , find the value of  $\lambda$ .

**(Hints : Domain and Range)**

7. A relation  $R$  is defined on the set of real numbers as

$$R = \{(x, y) : 1 + xy > 0 \text{ where } x \text{ and } y \text{ are real numbers}\}$$

show that  $R$  is not transitive.

**Section - D**

**Long Answer (LA) Type Question :**

1. (i) Let  $f: R \rightarrow R$  defined by  $f(x) = 2x^2 - 5x + 6$ . Find  $f^{-1}(-2)$ .

**(Hints : Definition of  $f^{-1}$ )**

(ii) Let  $g: R \rightarrow R$  defined by  $g(x) = x^2 + 2$ . Find  $f^{-1}([-2, 2])$ .

**(Hints : Definition of  $f^{-1}$ )**

2. Let  $f: W \rightarrow W$  defined by  $f(x) = \begin{cases} x+1, & \text{when } x \text{ is even} \\ x-1, & \text{when } x \text{ is odd} \end{cases}$

Show that  $f$  is bijective. And show that  $f^{-1} = f$ .

(Hints : bijective function)

3. If  $f: R^+ \rightarrow R^+$  is a polynomial function satisfying the functional equation  $f(f(x)) = 6x - f(x)$ , then  $f(17) = ?$

### (Hints : Composite function)

4. If  $f: R \rightarrow R$  defined by  $f(x) = 2x + 1$ . Find  $g: R \rightarrow R$  such that  $(gof)(x) = 10x + 10$ .

### (Hints : Composite function)

5. Let,  $A = \{1, 2, 3\}$  be a given set. Define a relation on  $A$  which is

- (i) neither symmetric nor antisymmetric on A.
- (ii) symmetric but not antisymmetric on A.
- (iii) both symmetric and antisymmetric.

(Hints : Concep of symmetric and antisymmetric relation)

6. Let,  $A = \{1, 2, 3\}$ ,  $B = \{a, b, c, d\}$  calculate the number of

- (i) one-one function.
- (ii) onto function.

(Hints : 4p<sub>3</sub>, |A| < B  $\Rightarrow$  0)

7. Let  $A = \{1, -1, 0\}$  Calculate the number of

- (i) reflexive relation on A
- (ii) Symmetric relation on A
- (iii) Antisymmetric relation A

**(Hints :** (i)  $2^{n^2-n}$  (ii)  $2 \frac{n(n+1)}{2}$

# ANSWER

---

## Section - A

|        |        |
|--------|--------|
| 1. (B) | 5. (C) |
| 2. (C) | 6. (D) |
| 3. (D) | 7. (A) |
| 4. (D) |        |

## Section - B

1.  $\{2, 4, 6, 8\}$
2. 2
3.  $\Lambda, \phi$
5.  $ad - bc \neq 0$

## Section - C

4.  $(-\infty, 1), (-\infty, 1)$
5.  $k = 2$
6.  $\lambda = 1$

## Section - D

1. (i)  $\phi$ , (ii) 0.
- 2.
3. -51, 34
4.  $g(x) = 5x + 5$
6. (i) 24 (ii) 0
7. (i) 64 (ii) 64 (iii) 216

